Third Semester MCA Degree Examination, June/July 2014 Operating System

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions.

- 1 a. Explain the following:
 - i) Multiprocessor systems.
 - ii) Distributed systems.
 - iii) Handheld systems.
 - iv) Clustered systems.

(10 Marks)

b. What is an operating system? Explain various services provided by an operating systems.

(10 Marks)

- 2 a. What are system calls? Briefly explain different categories of these.
- (07 Marks)
- b. What is a scheduler? Explain various types of schedulers briefly.

(08 Marks)

c. What is a thread? Briefly mention various types of threads.

(05 Marks)

- 3 a. With the help of a state transition diagram, explain various states of a process.
 - b. Explain process control block.

(06 Marks) (04 Marks)

c. Consider the following set of processes, with the length of the CPU-burst time given in milliseconds:

	Process	Burst time	Priority	Arrival time
	P_1	8	3	0
	P_2	1	1	1
	\mathbf{P}_3	2	3	2
1	P ₄	1	4	3
1	P_5	4	2	4

The processes are assumed to have arrived in the order P₁, P₂, P₃, P₄, P₅ all at time 0.

- i) Draw four Gantt charts illustrating the execution of these processes using FCFS, SJF (preemptive), priority (preemptive) and Round Robin (time quantum = 2) scheduling.
- ii) What is the waiting time of each process for each of the scheduling algorithm in part (i)? (10 Marks)
- 4 a. What is a deadlock? List the four necessary conditions for a deadlock to occur. (06 Marks)
 - b. Bring out the difference between deadlock avoidance and deadlock prevention scheme.

(02 Marks)

c. Consider the snapshot of a system:

Process	Allocation	Max	Available
	ABCD	ABCD	ABCD
P_0	0012	0012	1520
\mathbf{P}_1	1000	1750	
P_2	1354	2356	
P_3	0632	0652	·
P_4	0014	0656	

Answer the following questions using the Banker's algorithm:

- i) Is the system in a safe state?
- ii) If a request from process P₁ arrives for (0, 4, 2, 0), can the request be granted immediately?
- iii) If a request from process P₄ arrives for (0, 2, 2, 0), can the request be granted immediately? (12 Marks)
- 5 a. Define critical section problem and explain the necessary characteristics of a correct solution. (06 Marks)
 - b. Explain readers-writers problem and discuss the solution using semaphores. (08 Marks)
 - c. Explain the n-processes hardware solution for the critical section problem. (06 Marks)
- 6 a. What is fragmentation? Explain their types with examples. (06 Marks)
 - b. What is a page fault? What actions does operating system take when a page fault occurs?
 - (08 Marks)
 - c. What are the cause of thrashing?d. What do you mean by segmentation?(03 Marks)(03 Marks)
- 7 a. Explain the file allocation methods with their merits and demerits. (10 Marks)
 - b. What is access matrix? Discuss the implementation of access matrix. (10 Marks)
- 8 a. Consider the following page reference string:
 - 1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6.
 - How many page faults would occur in the case: i) LRU; ii) FIFO; iii) Optimal algorithms assuming three frames. Note that initially all frames are empty. (10 Marks)
 - b. Suppose that a disk drive has 5000 cylinders, numbered 0 to 4999. The drive is currently serving a request at cylinder 143, and the previous request was at cylinder 125. The queue of pending requests, in FIFO order is: 86, 1470, 913, 1774, 948, 1509, 1022, 1750, 130. Starting from the current head position, what is the total distance (in cylinders) that the disk arm moves to satisfy all the pending requests for each of the following disk-scheduling algorithms?
 - i) FCFS; ii) SSTF; iii) SCAN; iv) LOOK.

(10 Marks)

 $\forall_{i,j}, j \in \mathbb{N}_{+\infty}$